Move to the main content
:::
賴

Ming-Chih Lai

JobTitle: Associate Professor

CurrentJob: Associate Professor

E-mail: mclai@mail.cgu.edu.tw

Phone: 03-2118800#3354

Education: Ph. D., Graduate Institute of Life Science, National Defense Medical Center, Taiwan

Expertise: RNA metabolism, Cancer Research & Molecular Virology

Lab & Research Interest

A. Studying the biological functions of the DEAD-box RNA helicases DDX3 and DDX24

Human DDX3 and DDX24 are members of the DEAD-box RNA helicase family, which plays an essential role in gene expression and regulation in eukaryotes. DDX3 has been implicated in diverse biological processes, including cell growth and innate immunity, particularly in the regulation of inflammatory responses. More recently, we demonstrated that DDX3 participates in microRNA biogenesis and RNA interference, and DDX3 is critical for oocyte maturation and ovarian development. Despite these advances, several important questions remain:

(a) The role of DDX3 in neuronal and brain development

(b) Does DDX3 play a role in neurodegenerative diseases?

On the other hand, our recent research indicates that DDX24 can exert antioxidant and anti-apoptotic effects, at least in part through the regulation of HO-1 expression. However, the biological functions and molecular mechanisms of DDX24 remain to be elucidated, including:

(a) The role of DDX24 in inflammatory responses

(b) The mechanisms by which DDX24 regulates ANKRD1 and their biological significance

(c) The mechanisms by which DDX24 regulates FERMT1 and their biological significance

B. The mechanisms of hypoxia-induced translation in human colon cancer cells

Colorectal cancer (CRC) is among the most prevalent cancers worldwide. In Taiwan, CRC has ranked first in cancer incidence for more than a decade. Many patients with invasive or metastatic CRC die within five years due to treatment failure, highlighting the urgent need for novel therapeutic strategies and improved therapies. Hypoxia, a condition characterized by low oxygen levels, occurs in various physiological and pathological conditions, including cancers. Tumor hypoxia significantly contributes to tumor progression and is associated with a poor prognosis. An in-depth investigation of hypoxia-induced changes in gene expression may provide new opportunities for cancer treatment. Our current research focuses on the following issues:

(a) To elucidate the molecular mechanisms underlying hypoxia-induced translational regulation in colorectal cancer cells

(b) To identify diagnostic biomarkers and potential therapeutic targets for CRC

C. To improve recombinant protein productivity in Chinese hamster ovary cells

It is noteworthy that nearly 80% of currently approved therapeutic antibodies for humans are produced in Chinese hamster ovary (CHO) cells. To further enhance recombinant protein production and reduce cell culture costs, we will employ genetic engineering strategies to optimize CHO cell lines.


Publications

1.      Yu-Xiu Lin, Pei-Yu Hung, Yu-Ting Jiang, Ting-Yi Wu, Hsin-Yuan Hung, Ming-Chih Lai*. (2025 Aug). Anti-apoptotic and anti-oxidative effects of DDX24 through HO-1 transcriptional regulation. FASEB J. 39(16):e70968. doi: 10.1096/fj.202500598RR. (SCIE, 2024 IF=4.2, Ranking 17/107 in BIOLOGY)

2.      Hung-Hsuan Li, Hsin-Yuan Hung, Jau-Song Yu, Yu-Cheng Liao, Ming-Chih Lai*. (2025 Feb). Hypoxia-induced translation of collagen-modifying enzymes PLOD2 and P4HA1 is dependent on RBM4 and eIF4E2 in human colon cancer HCT116 cells. FEBS J. 292(4):881-898. doi: 10.1111/febs.17371. (SCIE, 2024 IF=4.2, Ranking 99/319 in BIOCHEMISTRY & MOLECULAR BIOLOGY)

3.      Ming-Chih Lai*, Yen-Ling Yu, Chiao-Nung Chen, Jau-Song Yu, Hsin-Yuan Hung, Shih-Peng Chan*. (2025 Jan). DDX3 participates in miRNA biogenesis and RNA interference through translational control of PACT and interaction with AGO2. FEBS Open Bio 15(1):180-195. doi: 10.1002/2211-5463.13920. (SCIE, 2024 IF=2.3, Ranking 234/319 in BIOCHEMISTRY & MOLECULAR BIOLOGY)

4.      Shang-Yu Tsai, Chih-Hung Lin, Yu-Ting Jiang, Guo-Jen Huang, Haiwei Pi, Hsin-Yuan Hung, Woan-Yuh Tarn, Ming-Chih Lai*. (2024 Nov). DDX3 is critical for female fertility via translational control in oogenesis. Cell Death Discovery 10(1):472. doi: 10.1038/s41420-024-02242-6. (SCIE, 2024 IF=7.0, Ranking 42/204 in CELL BIOLOGY)

5.      Ming-Chih Lai*, Yi-Pin Chen, Ding-An Li, Jau-Song Yu, Hsin-Yuan Hung, Woan-Yuh Tarn* (2022 Feb) DDX3 interacts with USP9X and participates in deubiquitination of the anti-apoptotic protein MCL1. FEBS J. 289(4): 1043-1061. doi: 10.1111/febs.16219. (SCIE, 2024 IF=4.2, Ranking 99/319 in BIOCHEMISTRY & MOLECULAR BIOLOGY)

6.      Ming-Chih Lai, Han-Hsiang Chen, Peng Xu, Robert YL Wang*. (2020 Jan). Translation control of Enterovirus A71 gene expression. Journal of Biomedical Science 27(1):22. doi: 10.1186/s12929-019-0607-9. (SCIE, 2024 IF=12.1 Ranking 9/195 in MEDICINE, RESEARCH & EXPERIMENTAL)

7.      Tsung-Ming Chen, Ming-Chih Lai, Yi-Han Li, Ya-Ling Chan, Chih-Hao Wu, Yu-Ming Wang, Chun-Wei Chien, San-Yuan Huang, H. Sunny Sun*, Shaw-Jenq Tsai*. (2019 Mar). hnRNPM induces translation switch under hypoxia to promote colon cancer development. EBioMedicine 41: 299-309. doi: 10.1016/j.ebiom.2019.02.059. (SCIE, 2024 IF=10.8, Ranking 13/195 in MEDICINE, RESEARCH & EXPERIMENTAL)

8.      Yu-Chang Ku, Min-Hua Lai, Chen-Chia Lo, Yi-Chuan Cheng, Jian-Tai Qiu, Woan-Yuh Tarn, Ming-Chih Lai*. (2018 Dec). DDX3 participates in translational control of inflammation induced by infections and injuries. Mol. Cell. Biol. 39(1): e00285-18. doi: 10.1128/MCB.00285-18. (SCIE, 2024 IF=2.7, Ranking 197/319 in BIOCHEMISTRY & MOLECULAR BIOLOGY)

9.      Jeng-Ting Chen, Chien-Chun Liu, Jau-Song Yu, Hung-Hsuan Li, Ming-Chih Lai*. (2018 Sep). Integrated omics profiling identifies hypoxia-regulated genes in HCT116 colon cancer cells. J. Proteomics 188: 139-151. doi: 10.1016/j.jprot.2018.02.031. (SCIE, 2024 IF=2.8, Ranking 38/86 in BIOCHEMICAL RESEARCH METHODS)

10.  Ming-Chih Lai*, Chiao-May Chang, H. Sunny Sun*. (2016 Apr). Hypoxia induces autophagy through translational up-regulation of lysosomal proteins in human colon cancer cells. PLoS One 11(4): e0153627. doi: 10.1371/journal.pone.0153627. (SCIE, 2024 IF=2.6, Ranking 44/135 in MULTIDISCIPLINARY SCIENCES)

11.  Ming-Chih Lai*, H. Sunny Sun, Shainn-Wei Wang, Woan-Yuh Tarn*. (2016 Jan). DDX3 functions in antiviral innate immunity through translational control of PACT. FEBS J. 283(1): 88-101. doi: 10.1111/febs.13553. (SCIE, 2024 IF=4.2, Ranking 99/319 in BIOCHEMISTRY & MOLECULAR BIOLOGY)

12.  Tsung-Ming Chen, Yu-Heng Shih, Joseph T. Tseng, Ming-Chih Lai, Chih-Hao Wu, Yi-Han Li, Shaw-Jenq Tsai*, H. Sunny Sun*. (2014 Mar). Overexpression of FGF9 incolon cancer cells is mediated by hypoxia-induced translational activation. Nucleic Acids Res. 42(5): 2932-2944. doi: 10.1093/nar/gkt1286. (SCIE, 2024 IF=13.1, Ranking 13/319 in BIOCHEMISTRY & MOLECULAR BIOLOGY)

13.  Ming-Chih Lai, Shainn-Wei Wang, Lie Cheng, Woan-Yuh Tarn, Shaw-Jenq Tsai*, H. Sunny Sun*. (2013 Jul). Human DDX3 interacts with the HIV-1 Tat protein to facilitate viral mRNA translation. PLoS One 8(7): e68665. doi: 10.1371/journal.pone.0068665. (SCIE, 2024 IF=2.6, Ranking 44/135 in MULTIDISCIPLINARY SCIENCES)

14.  Woan-Yuh Tarn*, Ming-Chih Lai*. (2011 Feb). Translational control of cyclins. Cell Div. 6(1):5. doi: 10.1186/1747-1028-6-5. (SCIE, 2024 IF=2.2, Ranking 158/204 in CELL BIOLOGY)

15.  Ming-Chih Lai, Wen-Cheng Chang, Sheau-Yann Shieh, Woan-Yuh Tarn*. (2010 Nov). DDX3 regulates cell growth through translational control of cyclin E1. Mol. Cell. Biol. 30(22): 5444-5453. doi: 10.1128/MCB.00560-10. (SCIE, 2024 IF=2.7, Ranking 197/319 in BIOCHEMISTRY & MOLECULAR BIOLOGY)

16.  Ming-Chih Lai, Tsui-Yi Peng, Woan-Yuh Tarn*. (2009 Mar). Functional interplay between viral and cellular SR proteins in control of post-transcriptional gene regulation. FEBS J. 276(6): 1517-1526. doi: 10.1111/j.1742-4658.2009.06894.x. (SCIE, 2024 IF=4.2, Ranking 99/319 in BIOCHEMISTRY & MOLECULAR BIOLOGY)

17.  Ming-Chih Lai, Yan-Hwa Wu Lee, Woan-Yuh Tarn*. (2008 Sep). The DEAD-box RNA helicase DDX3 associates with export messenger ribonucleoproteins as well as tip-associated protein and participates in translational control. Mol. Biol. Cell 19(9): 3847-3858. doi: 10.1091/mbc.e07-12-1264. (SCIE, 2024 IF=2.7, Ranking 133/204 in CELL BIOLOGY)

18.  Ming-Chih Lai, Woan-Yuh Tarn*. (2004 Jul). Hypophosphorylated ASF/SF2 binds TAP and is present in messenger ribonucleoproteins. J. Biol. Chem. 279: 31745- 31749. doi: 10.1074/jbc.C400173200. (SCIE, 2024 IF=3.9, Ranking 114/319 in BIOCHEMISTRY & MOLECULAR BIOLOGY)

19.  Ming-Chih Lai, Hao-Wei Kuo, Wen-Cheng Chang, Woan-Yuh Tarn*. (2003 Mar). A novel splicing regulator shares a nuclear import pathway with SR proteins. EMBO J. 22(6): 1359-1369. doi: 10.1093/emboj/cdg126. (SCIE, 2024 IF=8.3, Ranking 30/319 in BIOCHEMISTRY & MOLECULAR BIOLOGY)

20.  Chin Li, Ru-Inn Lin, Ming-Chih Lai, Pin Ouyang, Woan-Yuh Tarn*. (2003 Oct). Nuclear Pnn/DRS protein binds to spliced mRNPs and participates in mRNA processing and export via interaction with RNPS1. Mol. Cell. Biol. 23(20): 7363-7376. doi: 10.1128/MCB.23.20.7363-7376.2003. (SCIE, 2024 IF=2.7, Ranking 197/319 in BIOCHEMISTRY & MOLECULAR BIOLOGY)

21.  Ming-Chih Lai, Ru-Inn Lin, Woan-Yuh Tarn*. (2003 May). Differential effects of hyperphosphorylation on splicing factor SRp55. Biochem. J. 371(Pt 3): 937-945. doi: 10.1042/BJ20021827. (SCIE, 2024 IF=4.3, Ranking 91/319 in BIOCHEMISTRY & MOLECULAR BIOLOGY)

22.  Ming-Chih Lai, Ru-Inn Lin, Woan-Yuh Tarn*. (2001 Aug). Transportin-SR2 mediates nuclear import of phosphorylated SR proteins. Proc. Natl. Acad. Sci. USA 98(18): 10154-10159. doi: 10.1073/pnas.181354098. (SCIE, 2024 IF=9.1, Ranking 14/135 in MULTIDISCIPLINARY SCIENCES)

23.  Ming-Chih Lai, Ru-Inn Lin, Shin-Yi Huang, Ching-Wei Tsai, Woan-Yuh Tarn*. (2000 Mar). A human importin-β family protein, transportin-SR2, interacts with the phosphorylated RS domain of SR proteins. J. Biol. Chem. 257(11): 7950-7957. doi: 10.1074/jbc.275.11.7950. (SCIE, 2024 IF=3.9, Ranking 114/319 in BIOCHEMISTRY & MOLECULAR BIOLOGY)

24.  Ming-Chih Lai, Bee Heong Teh, Woan-Yuh Tarn*. (1999 Apr). A human papillomavirus E2 transcriptional activator. The interactions with cellular splicing factors and potential function in pre-mRNA processing. J. Biol. Chem. 274(17): 11832-11841. doi: 10.1074/jbc.274.17.11832. (SCIE, 2024 IF=3.9, Ranking 114/319 in BIOCHEMISTRY & MOLECULAR BIOLOGY)

25.  Ming-Chih Lai, Yuung-Chiarng Wang, Feng-Yuan Yang, Lo-Chun Au*. (1997 Sep). Enhancement of transfection efficiency by using oligodeoxyribonucleotide as carrier. Anal. Biochem. 251(2): 292-294. doi: 10.1006/abio.1997.2297. (SCIE, 2024 IF=2.5, Ranking 45/86 in BIOCHEMICAL RESEARCH METHODS)

26.  W. -J. Peng, J. -T. Pan, M. -C. Lai, C. -F. Chiu and T. -H. Lin*. (1997 Oct). The genome of moloney murine leukemia virus can be integrated by the Integrase of human Immunodeficiency virus type 1 expressed alone in vivo. Proc. Natl. Sci. Counc. ROC, Part B: Life Science 21(4): 144-160. (SCI)

27.  C. -Y. Wang, C. -F. Yang, M. -C. Lai, Y. -H. Lee, T. -L. Lee and T. -H. Lin*. (1994 Aug). Molecular dynamics simulation of a leucine zipper motif predicted for the integrase of human immunodeficiency virus type 1. Biopolymers 34(8): 1027-1036. doi: 10.1002/bip.360340806. (SCIE, 2024 IF=3.2, Ranking 151/319 in BIOCHEMISTRY & MOLECULAR BIOLOGY)