Rothman, James E. 的摘要

羅斯曼, 詹姆斯 E. 依出版年份範圍過濾: 2020年至2024年

摘要指標

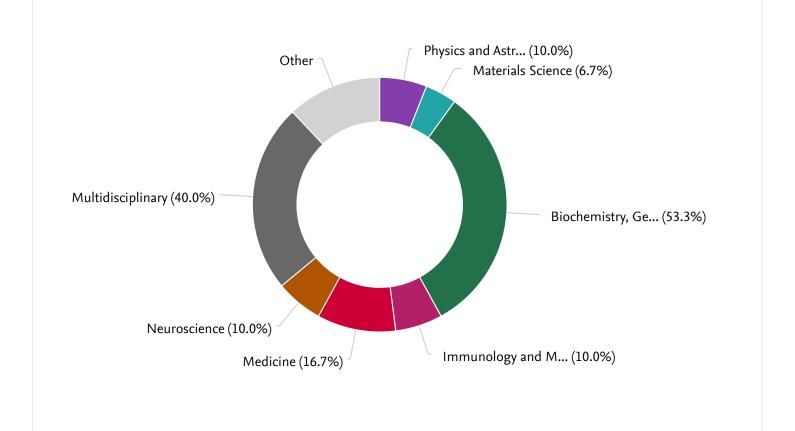
實體: 羅斯曼, 詹姆斯E. · 範圍:所有學科領域 (ASJC) · 年份範圍: 2020 至 2024 年 · 資料來源:

Scopus, 截至 2025 年 8 月 27 日

三十 1.66 1.26

學術成果 💲 📗 領域加權引用影響力 🥸 📗 領域加權引用影響力中位數 86.7% 開放獲取

741 24.7 74


引用計數 🕸 每篇出版物的引用次數 🕸 h-指數

15

*h*5指數

按學科領域劃分的出版品份額

實體: 羅斯曼, 詹姆斯E. · 範圍: 所有學科領域 (ASJC) · 年份範圍: 2020 至 2024 年 · 資料來源: Scopus, 截至 2025 年 8 月 27 日

五大研究主題

實體: 羅斯曼,詹姆斯E. · 範圍:所有學科領域 (ASJC) · 年份範圍:2020 至 2024 年 · 資料來源:

Scopus, 截至 2025 年 8 月 27 日

學術成就 - 主題強度連結:

權威 非常好 可辯護 虚弱的 其他

	研究者		全世界
話題	學術成果	領域加權 引用影響力	突顯百分位數
SNARE蛋白在膜融合中的機制 T.2201	19	1.08	92.228
超高解析度顯微鏡技術 T.927	3	4.78	98.913
高爾基體的細胞內運輸機制 T.2865	3	1.58	92.283
離子淌度和質譜創新 T.2743	1	2.61	96.644
整合素標靶治療癌症影像和治療 T.4307	1	0.64	89.364

前 10% 引用百分位數的輸出摘要

實體: 羅斯曼, 詹姆斯E. · 範圍: 所有學科領域 (ASJC) · 年份範圍: 2020 至 2024 年 · 資料來

源: Scopus, 截至 2025 年 8 月 27 日

羅斯曼,詹姆斯 E.

23.3%

按 CiteScore 百分位排名前 10% 期刊的出版物

實體: 羅斯曼, 詹姆斯E. · 範圍: 所有學科領域 (ASJC) · 年份範圍: 2020 至 2024 年 · 資料來

源: Scopus, 截至 2025 年 8 月 27 日

羅斯曼,詹姆斯 E.

74.1%

國際合作摘要

實體: 羅斯曼, 詹姆斯E.. 範圍:所有學科領域

(ASJC) · 年份範圍: 2020至 2024年 · 資料來

源: Scopus, 截至 2025 年 8 月 27 日

羅斯曼, 詹姆斯 E. 56.7%

產學研合作概要

實體: 羅斯曼, 詹姆斯E. · 範圍:所有學科領域

(ASJC) · 年份範圍: 2020至 2024年 · 資料來

源:Scopus,截至 2025 年 8 月 27 日

羅斯曼, 詹姆斯 E.

6.7%

FWCI 最高的出版物

實體: 羅斯曼, 詹姆斯E. · 範圍: 所有學科領域 (ASJC) · 年份範圍: 2020 至 2024 年 · 資料來源: Scopus, 截至 2025 年 8 月 27 日

出版品	引用	領域加權 引用影響 力
在高度多路復用的超解析度成像中利用瞬態適配器揭示細胞複雜性。 Schueder, F.、 Rivera-Molina, F.、 Su, M.和另外 5 名 (2024) Cell,187 (7),第 1769-1784 頁。	33	6.38
具有受損 n 端乙醯化能力的雙等位基因 NAA60 變異會導致常染色體隱性原發性家族性腦鈣化。 Chelban, V.、Aksnes, H.、Maroofian, R.等 58 人 (2024) 自然通訊,15(1).	二十 七	5.67
透過多色三維挽救螢光成像揭示奈米級亞細胞結構。 Zhang, Y.、Schroeder, LK、Lessard, MD以及其他 12 人 (2020) Nature Methods,17(2),第 225-231 頁。	99	4.96
三維自適應光學奈米顯微技術,用於亞 50 奈米分辨率的厚樣本成像。 Hao, X.、Allgeyer, ES、Lee, DR.以及其他 13 人 (2021) Nature Methods,18(6),第 688-693 頁。	50	3.00
Munc13 結構轉變和低聚物可能編排囊泡啟動神經傳導物質釋放的連續階段。 Grushin, K.、Sundaram, RVK、Sindelar, CV等 1 家 (2022)美國國家科學院院刊,119(7)。	四十 二	2.75